skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jenkins, Bethany_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low‐Fe stress‐induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low‐Fe stress, diatoms alter plastid‐specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid‐localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well‐studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid‐enriched fractions fromThalassiosira pseudonanato gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry‐based peptide identification and quantification, we analyzedT. pseudonanagrown under Fe‐replete and ‐limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light‐harvesting proteins. In silico localization predictions of proteins identified in this plastid‐enriched proteome allowed for an in‐depth comparison of theoretical versus observed plastid‐localization, providing evidence for the potential of additional protein import pathways into the diatom plastid. 
    more » « less